
Hanbing Fang Homework 6 MAT324: Real Analysis

Problem 6C,7
Show that l1 with norm defined by ∥(a1, a2, . . .)∥ = supk |ak| is not a Banach space.

Proof. Just take ln = (1, 12 ,
1
3 , . . . ,

1
n , 0, 0, . . .). The limit should be ( 1k )k=1,2,... but it is not in l1.

Problem 6C,8
Show that l1 with norm defined by ∥(a1, a2, . . .)∥ =

∑
k |ak| is a Banach space.

Proof. Let ln ∈ l1 be a Cauchy sequence and we need to find a limit in l1.
• First we use Cauchy sequence to find a subsequence {lnk

} such that ∥lnk+1
− lnk

∥ ≤ 1
k2 . This is a

standard procedure. First we find a N1 such that for any n,m ≥ N1, ∥ln − lm∥ ≤ 1, and then we just
take ln1

= lN1
. Then we can find N2 > N1 such that for any n,m ≥ N1, ∥ln − lm∥ ≤ 1

22 ,and then take
ln2 = lN2 . Repeating this process, we can find such subsequence.

• Take ak = lnk+1
− lnk

, k ≥ 1; a0 = ln1 . Then we know that
∑N

k=0 ak = lnN+1
; and

∑N
k=0 |ak| < 1000 for

any positive integer k. Now we can define l∞ =
∑∞

k=0 ak which is well-difined since for each entry, the
limit do exist. And also we know that limk→∞ lnk

= l∞, l∞ ∈ l1.

• By the Cauchy sequence of ln ∈ l1, we know in fact that limk→∞ lk = l∞. This completes the proof.

Problem 6C,9
Show that the vector space C[0, 1] with the norm defined by ∥f∥ =

∫
[0,1]

|f |dx is not a Banach space.

Proof. For k > 2,Just take the function fk = 1, if x ∈ [0, 12 −
1
k ]; fk = 0, if x ∈ [ 12 +

1
k , 1] and let fk be linear

in [ 12 −
1
k ,

1
2 +

1
k ]. This is a Cauchy sequence but the limit should be f = χ[0, 12 ]

(x) which cannot be modified
to be a continuous function up to a null set.

Problem 6C,15
Suppose V is a normed vector space and U is a subspace. Define ∥.∥ on the quotient space V/U by

∥f + U∥ = inf{∥f + g∥|g ∈ U}

• Prove that ∥.∥ is a norm on V/U if and only if U is a closed subspace of V .

• Prove that if V is a Banach space and U is a closed subspace, then the quotient space V/U with
the norm defined above is also a Banach space.

• Prove that if U and V/U both are Banach spaces, then V is also Banach space.

Proof. • The triangle inequality and homogeneity is quite obvious from the definition, which do not need
U to be closed. Now we check the third property in the definition of norm. If U is a closed subspace,
take f ∈ V such that ∥f + U∥ = 0, then we can find gi ∈ U, i = 1, 2, . . . such that ∥f + gi∥ → 0. Then
we know that {gi} is Cauchy sequence in U . By closedness of U , we can find g ∈ U which is the limt
of {gi} and also f + g = 0, which implies f ∈ U so that [f + U ] = [0] in the quotient space. Thus we
know that ∥.∥ is a norm on V/U . Conversely, take fn be a Cauchy sequence in U and converge to f in
V . Then one can see ∥f∥ = 0. Since it is norm, we know that f ∈ U and thus U is a closed subsapce.

• Take a Cauchy sequence [fi + U ] in V/U . Note first for any class [x+ U ], we can always choose some
represent element x such that ∥x′∥ ≤ 2∥x∥. First we can choose a subsequence [fnk

+ U ] such that
∥fnk+1

− fnk
+ U∥ ≤ 1

2K+1 . So we can find some gnk
such that ∥fnk+1

− fnk
− gnk

∥ ≤ 1
2k

. Now set
f

′

n1
= fn1

, f
′

n2
= fn2

− gn1
, f

′

n3
= fn3

+ gn1
− gn2

, . . ., so [f
′

nk
+ U ] = [fnk

+ U ], ∥f ′

nk+1
− f

′

nk
∥ ≤ 1

2k
.

Since V is a Banach space, we know that these exists f∞ = limk→∞ f
′

nk
. And since obviosly for

any x ∈ V, ∥x∥ ≥∥x + U∥, we know that [f∞ + U ] = limk→∞[f
′

nk
+ U ] = limk→∞[fnk

+ U ]. Thus
[f∞ + U ] = limk→∞[fk + U ]. (Remark:We can also use 6.41 to prove this.)
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• Take any Cauchy sequence fn in V . Since for any x ∈ V, ∥x∥ ≥∥x+U∥, we know that [fn +U ] is also
Cauchy sequence in V/U . Then by assumption, we can have a limit [f∞ + U ]. Now we can choose
gnk

∈ U such that ∥fnk
−f∞−gnk

∥ ≤ 2∥fnk
−f∞+U∥. Recall that fnk

is Cauchy sequence, thus gnk
is

also Cauchy sequence sequence in U and we can get a limit g∞. Thus f∞+g∞ = limk→∞ fnk
= limk→∞ fk.

Problem 6D,2
Suppose ϕ is a linear functional on a vector space V . Prove that if U is vector subspace of V and
nullϕ ⊂ U , then U = nullϕ or U = V .

Proof. Without loss of generality, we assume ϕ is not zero functional. Then we can find a ∈ V such that
f(a) = 1. Then for any x ∈ V , we know that

f(x− f(x)a) = f(x)− f(x) = 0

which imply x− f(x)a ∈ nullϕ. In other words, nullϕ⊕ span{a} = V . Then the result follows directly.

Problem 6D,3
Suppose ϕ, ψ are linear functional on the same vector space. Prove that nullϕ ⊂ nullψ if and only if
there exists some α ∈ F such that ψ = αϕ.

Proof. Let V be the vector space. By the previous exercise, we know that nullψ = V or nullψ = ϕ. In the
first case, ψ = 0 so we can just take α = 0. In the second case, take a ∈ V such that ϕ(a) = 1. Then we
know that for any x ∈ V, x− ϕ(x)a ∈ nullϕ, so also x− ϕ(x)a ∈ nullψ. So ψ(x) = ψ(a)ϕ(x). Then we can
take α = ψ(a).

Problem 6D,18
Suppose V is a normed vector space such that its dual V ′ is separable. Prove that V is separable.

Proof: Take B = {ϕ ∈ V
′ |∥ϕ∥ = 1} which is just unit ball in V

′ .

• We first show that B is separable. In fact, since V ′ is separable, we can find dense set {ϕn}n=1,2,...

and without loss of generality ϕn ̸= 0 for all n. Take ψn = ϕn

∥ϕ∥ . Then we can easily check that
ψk, k = 1, 2, . . . is dense set in B. So we have proved that B is also separable.

• For any ψn, we can find xn ∈ V such that ∥xn∥ = 1, ψn(xn) ≥ 1
2 . Now take V0 = span{xn}n=1,2,....

Obviouly V0 is separable since rational combination of xn is countably dense subset of V0.

• We claim that V0 = V and then the proof is complete. In fact, if there exists some x ∈ V − V0, then
from Hahn-Banach theorem, we know that we can find some ϕ0 ∈ V

′ such that ϕ0|V0 = 0, ∥ϕ0∥ = 1 so
ϕ0 ∈ B.Then we know that for any positive integer n,

∥ψn − ϕ0∥ = sup
∥x∥=1

|ψn(x)− ϕ0(x)| ≥ |ψn(xn)− ϕ0(xn)| = |ψn(xn)| ≥
1

2

This contradicts to the first step where we have proved that ψk, k = 1, 2, . . . is dense set in B. So in
fact we do have V0 = V .

Problem 6D,20
Define Φ : V → V

′′ by
(Φf)(ϕ) = ϕ(f).

for f ∈ V, ϕ ∈ V
′ . Show that ∥Φ(f)∥ =∥f∥.
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Proof: By definition, for f ∈ V

∥Φ(f)∥ = sup
∥ϕ∥=1

(Φf)(ϕ) = sup
∥ϕ∥=1

ϕ(f) ≤∥f∥.

On the other hand, from Hahn-Bnanch theorem, we know that for f ∈ V , there exists some ϕ0 such that
ϕ0(f) =∥f∥, ∥ϕ0∥ = 1. From this fact, we know that

sup
∥ϕ∥=1

ϕ(f) ≥∥f∥.

combining these, we get ∥Φ(f)∥ =∥f∥.
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